Predictive Analytics Group

The Predictive Analytics Group focuses on the investigation and application of machine learning methods for real-world challenges in agriculture, construction, and industrial systems. Our interdisciplinary research explores data-driven prediction and evaluation techniques to support sustainability, efficiency, and decision-making. With expertise in both methodological development and applied use cases, we contribute to advancing predictive analytics in complex environments. The group’s work is documented in peer-reviewed publications, including experimental studies and systematic reviews.

Current members: Jörg LeukelLuca ScheurerAdrian Stengle
Former members: Martin Riekert, Tobias Zimpel

Third-party funded research projects

Project Funded by
Digital value chains for sustainable small-scale agriculture; sub-project 10: Machine learning in grassland management (DiWenkLa) Federal Ministry of Food and Agriculture (BMEL)
Artificial intelligence for digital & sustainable road construction (KInaStra) Ministry of Economic Affairs, Labor and Tourism Baden-Württemberg
Artificial intelligence for efficient and resilient agricultural technology (KINERA) Federal Ministry of Food and Agriculture (BMEL)
Platform ecosystem for innovative maintenance management through predictive maintenance (PlatonaM) Federal Ministry for Economic Affairs and Climate Action (BMWi)
Agriculture 4.0: Information system for pig farming Ministry for Nutrition, Rural Areas and Consumer Protection Baden-Württemberg

Publications

  • Leukel, J., Scheurer, L., & Zimpel, T. (2025). Overinterpretation of evaluation results in machine learning studies for maize yield prediction: A systematic review. Computers and Electronics in Agriculture, 230, Article 109892, https://doi.org/10.1016/j.compag.2024.109892

  • Müller, M., Gohl, S., Groll, K., & Leukel, J. (2025). Wie GreenAI-Bauprozesssteuerung und automatisierte CO2-Bilanzierung die CO2-Emissionen senken. In Schäfer, F. (Ed.), 4. Kolloquium Straßenbau in der Praxis: Fachtagung zum Planen, Bauen, Erhalten, Betreiben unter den Aspekten von Nachhaltigkeit und Digitalisierung. Tagungshandbuch 2025 (pp. 381-387). expert.
  • Scheurer, L., Leukel, J., Zimpel, T., Werner, J., Perdana-Decker, S., & Dickhoefer, U. (2024). Predicting herbage biomass on small-scale farms by combining sward height with different aggregations of weather data. Agronomy Journal116(6), 3205-3221. https://doi.org/10.1002/agj2.21705
  • Leukel, J., Scheurer, L., & Sugumaran, V. (2024). Machine learning models for predicting physical properties in asphalt road construction: A systematic review. Construction and Building Materials440, Article 137397.  https://doi.org/10.1016/j.conbuildmat.2024.137397
  • Riekert, M. (2024). Automatische Prozessüberwachung in der Nutztierhaltung: Gestaltung eines Verfahrens zur Extraktion von Prozessindikatoren aus Bilddaten mittels Deep Learning. Dissertation, Universität Hohenheim. https://doi.org/10.60848/10815
  • Stumpe, C., Leukel, J., & Zimpel, T. (2024). Prediction of pasture yield using machine learning-based optical sensing: A systematic review. Precision Agriculture25(1), 430-459. https://doi.org/10.1007/s11119-023-10079-9
  • Zimpel, T., Perdana-Decker, S., Leukel, J., Scheurer, L., Dickhoefer, U., & Werner, J. (2023). P42 Estimating pasture yield using machine learning and weather data: Effect of small and large prediction horizons. Animal-science proceedings14(4), 628-629. https://doi.org/10.1016/j.anscip.2023.04.137
  • Leukel, J., González, J., & Riekert, M. (2023). Machine learning-based failure prediction in industrial maintenance: Improving performance by sliding window selection. International Journal of Quality & Reliability Management40(6), 1449-1462. https://doi.org/10.1108/IJQRM-12-2021-0439
  • Leukel, J., Zimpel, T., & Stumpe, C. (2023). Machine learning technology for early prediction of grain yield at the field scale: A systematic review. Computers and Electronics in Agriculture207, Article 107721. https://doi.org/10.1016/j.compag.2023.107721
  • Zimpel, T. (2022). Modeling pig rearing as a digital shadow. In J. Michael, J. Pfeiffer, & A. Wortmann (Eds.), Modellierung 2022 Satellite Events. GI. https://doi.org/10.18420/modellierung2022ws-014
  • Zimpel, T., Wild, A., Schrade, H., & Kirn, S. (2022). Association rule mining to study process-related cause-effect-relationships in pig farming. In Proceedings of the Workshop on Process Management in the AI Era 2022 (PMAI 2022) co-located with 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAIS 2022), Vienna, Austria, July 23, 2022. CEUR Workshop Proceedings 3310. https://ceur-ws.org/Vol-3310
  • Leukel, J., González, J., & Riekert, M. (2021). Adoption of machine learning technology for failure prediction in industrial maintenance: A systematic review. Journal of Manufacturing Systems61, 87-96. https://doi.org/10.1016/j.jmsy.2021.08
  • Riekert, M., Opderbeck, S., Wild, A., & Gallmann, E. (2021). Model selection for 24/7 pig position and posture detection by 2D camera imaging and deep learning. Computers and Electronics in Agriculture187, Article 106213. https://doi.org/10.1016/j.compag.2021.106213
  • Riekert, M., Riekert, M. & Klein, A. (2021). Simple baseline machine learning text classifiers for small datasets. SN Computer Science2, Article 178. https://doi.org/10.1007/s42979-021-00480-4
  • Zimpel, T., Riekert, M., Klein, A., & Hoffmann, C. (2021). Machine learning for predicting animal welfare risks in pig farming. Agricultural Engineering76(1), 24-35. https://doi.org/10.15150/lt.2021.3261
  • Riekert, M., Klein, A., Adrion, F., Hoffmann, C., & Gallmann, E. (2020). Automatically detecting pig position and posture by 2D camera imaging and deep learning. Computers and Electronics in Agriculture, 174, Article 105391. https://doi.org/10.1016/j.compag.2020.105391
  • Riekert, M., Zimpel, T., Hoffmann, C., Wild, A., Gallmann, E., & Klein, A. (2020). Towards animal welfare monitoring in pig farming using sensors and machine learning. In Referate der 40. Jahrestagung der Gesellschaft für Informatik in der Land-, Forst- und Ernährungswirtschaft. Fokus: Digitalisierung für Mensch, Umwelt und Tier (pp. 271-276). Freising, Germany. LNI P-299. GI.
  • Zimpel, T., Riekert, M., Hoffmann, C., & Wild, A. (2020). Maschinelle Lernverfahren zur frühzeitigen Prognose der Handelsklasse. In Referate der 40. Jahrestagung der Gesellschaft für Informatik in der Land-, Forst- und Ernährungswirtschaft. Fokus: Digitalisierung für Mensch, Umwelt und Tier (pp. 361-366). Freising, Germany. LNI P-299. GI.
  • Zimpel, T., Riekert, M., & Wild, A. (2020). Designing a smart farming platform for sustainable decision making. Proceedings of the 15th International Conference on Wirtschaftsinformatik (WI 2020). Potsdam, Germany. https://doi.org/10.30844/wi_2020_x3-zimpel